Daily QA in proton therapy using a single commercially available detector
نویسندگان
چکیده
We present here a novel method for using a single device in the daily quality assur- ance (QA) of pencil beam scanning (PBS) proton beams and an improved method for uniform scanning (US). The device can be used to measure the spot position, spot sigma, range, output, collinearity of the X-ray system and proton beam, and to QA the first scatterers and a number of other imaging and mechanical checks. We have performed the daily QA according to this procedure for more than six months in both a PBS gantry and a US gantry. All of the tests were found to be sensitive and accurate enough to determine if the property being tested is within the tolerance. The output has remained within the ± 2% tolerance, with the majority of measurements within ± 1%, and the range was within ± 0.5 mm. The collinearity of the proton beam in both gantries is within the ± 1 mm tolerance in both X and Y directions for all measurements. A novel procedure to measure the functionality of the first scatterers in the US gantry is included in the QA procedure. It was found to be sensitive enough to pick up the thinnest scatterer of 0.6 mm in both possible failure methods - when it always remains in the beam or in the case when it never goes into the beam. The daily QA procedure presented here can be implemented at PBS or US proton therapy centers with a minimal outlay for equipment and setup time. The procedure can be performed in less than 30 min, and has been found to be accurate and reliable enough for the QA of a proton therapy gantry before patient treatment every day.
منابع مشابه
A novel daily QA system for proton therapy
We describe the design and use of a daily quality assurance (QA) system for proton therapy. The QA system is designed to check the overall readiness of proton therapy system consistently within certain reference tolerances by a home-made QA device (the QA device). The QA device is comprised of a commercially available QA device, rf-Daily QA 3, a home-made acrylic phantom, a set of acrylic compe...
متن کاملMonte Carlo calculation of proton ranges in water phantom for therapeutic energies
Introduction: One crucial point when calculating the distribution of doses with ions is the uncertainty of the Bragg peak. The proton ranges in determined geometries like homogeneous phantoms and detector geometries can be calculated with a number of various parameterization models. Several different parameterizations of the range-energy relationship exist, with different level...
متن کاملMonte Carlo calculations of dose distribution for the treatment of gastric cancer with proton therapy
Proton therapy is a common form of external radiation therapy based on the manipulation of Bragg peak of this beam, it can treat the tumor by delivering high levels of doses to it, while protecting surrounding healthy tissues against radiation. In this work, the dose distribution of proton and secondary particles such as neutrons, photons, electrons and positrons in gastric cancer proton therap...
متن کاملPractical implications for the quality assurance of modulated radiation therapy techniques using point detector arrays
PURPOSE Linac parameters potentially influencing the delivery quality of IMRT and VMAT plans are investigated with respect to threshold ranges, consequently to be considered in a linac based quality assurance procedure. Three commercially available 2D arrays are used to further investigate the influence of the measurement device. METHODS Using three commercially available 2D arrays (Mx: Matri...
متن کاملQuantum mechanical proton range in human body
Introduction: Proton therapy delivers radiation to tumor tissue in a much more confined way than conventional photon therapy thus allowing the radiation oncologist to use a greater dose while still minimizing side. Materials and Methods: protons release most of their energy within the tumor region. As a result, the treating physician can potentially give an...
متن کامل